Amenable Actions of Nonamenable Groups
نویسندگان
چکیده
Since 1929 when von Neumann [vN29] introduced the notion of an invariant mean on a group (and more generally on a G-set) there is a permanent interest in the study of the phenomenon known as amenability. Amenable objects like groups, semigroups, algebras, graphs, metric spaces, operator algebras etc. play an important role in different areas of mathematics. A big progress in understanding of the structure of the class of amenable groups and in the study of asymptotic characteristics of them like growth of Følner sets (the notion introduced by A.M. Vershik in [Ver73]), drift, entropy etc. was reached in the past two decades [Ver73, Gri85, KV83, Gri98, CSGH99, BV, Ers04, Ers03, Ers05, BKNV04]. An important role in propaganda of the idea of amenability belongs to, perhaps the best, introductory to the subject of amenable groups book of Greenleaf [Gre69] where the following question is formulated.
منابع مشابه
Invariant Means and the Structure of Inner Amenable Groups
We study actions of countable discrete groups which are amenable in the sense that there exists a mean on X which is invariant under the action of G. Assuming that G is nonamenable, we obtain structural results for the stabilizer subgroups of amenable actions which allow us to relate the first `-Betti number of G with that of the stabilizer subgroups. An analogous relationship is also shown to ...
متن کاملInvariant Percolation and Measured Theory of Nonamenable Groups
The notion of amenability was introduced in 1929 by J. von Neumann [68] in order to explain the Banach-Tarski paradox. A countable discrete group Γ is amenable if there exists a left-invariant mean φ : `∞(Γ) → C. The class of amenable groups is stable under subgroups, direct limits, quotients and the free group F2 on two generators is not amenable. Knowing whether or not the class of amenable g...
متن کاملEvery Action of a Nonamenable Group Is the Factor of a Small Action
It is well known that if G is a countable amenable group and G y (Y ,ν) factors onto G y (X ,μ), then the entropy of the first action must be at least the entropy of the second action. In particular, if G y (X ,μ) has infinite entropy, then the action G y (Y ,ν) does not admit any finite generating partition. On the other hand, we prove that if G is a countable nonamenable group then there exis...
متن کاملA Note on Invariant Finitely Additive Measures
We show that under certain general conditions any finitely additive measure which is defined for all subsets of a set X and is invariant under the action of a group G acting on X is concentrated on a G-invariant subset Y on which the G-action factors to that of an amenable group. The result is then applied to prove a conjecture of S. Wagon about finitely additive measures on spheres. It is well...
متن کاملA Brief Introduction to Amenable Equivalence Relations
The notion of an amenable equivalence relation was introduced by Zimmer in the course of his analysis of orbit equivalence relations in ergodic theory (see [12]). Recently it played an important role in Monod’s striking family of examples of nonamenable groups which do not contain nonabelian free subgroups. If A is a subring of R, define H(A) to be the group of all piecewise PSL2(A) homeomorphi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006